Electroweak, Top and QCD Results from CDF at the TeVatron

Beate Heinemann, University of Liverpool

- The TeVatron and the CDF Detector
- EWK: Di-Boson Production
- TOP: top-quark measurements
- QCD: double-pomeron exchange
- Conclusions

The TeVatron: Run 2

CDF

p- \bar{p} collisions at sqrt(s) $\approx 2.0 \text{ TeV}$

bunch crossing rate 396 ns

Manchester, 24/09/2

The CDF 2 Detector

Retained from Run 1

- Solenoidal magnet (1.4 Tesla)
- Central Calorimeters

Manchester, 24/09/2003

Cantral Muon Datastans The second of the se

New for Run 2

- Tracking System
 - ✓ Silicon Vertex detector (SVX II)
 - ✓ Intermediate silicon layers (ISL)
 - ✓ Central Outer tracker (COT)
- Scintillating tile forward calorimeter
- Intermediate muon detectors
- Time-Of-Flight system
- Front-end electronics (132 ns)
- Trigger System (pipelined)

 Beate Heinemann

University of Liver AQ system

CDF Run 2 Luminosity

Physics Analyses use about 130 pb⁻¹ recorded up to June 2003 (about 70 pb⁻¹ good quality data on tape up to current shutdown)

Expect 2/fb by 2006 and 4.4-8.6 /fb by 2009

University of Liverpool

CDF: Data taking

· All Sub-detectors fully operational

· Smooth and efficient data taking for over one

year now!

 Efficiency (including Silicon) about 90%

Most Challenging part of CDF: Layer 00

Beate Heinemann University of Liverpool

Impact parameter resolution greatly improved e.g. at 1 GeV subtracting 30 mm beamspot size:

> 33.5 mm 26.5 mm ottime

Di-Boson Production: Why?

Something happens

Manchester, 24/09/2003

Beate Heineman University of Liver

- -SM precision tests
- -SUSY
- -Large Extra Dimensions
- -Higgs

-Run I anomalies Diboson cross sections from CDF (preliminary)

Di-Boson Production at the LHC

- Di-Photon Production:

- discovery channel at LHC for mh<130 GeV

-WW and ZZ Production:

-discovery channels at LHC for 500>mh>130 GeV

Manchester, 24/09/2003

Beate Heinemann University of Liverpool

Di-Photon Production

- Irreducible BG to light higgs at LHC
- SM couplings small (_em)
- New Physics Scenarios:
 - Large Extra Dimensions:
 - Graviton exchange contributes
 - Present sensitivity about 900
 GeV
 - Generic "bump" search
 - Extraodinary events with 2 photons and transverse momentum imbalance(?)

Manchester, 24/09/2003

Beate Heinemann University of Liverpool

F. (GeV)

Di-Photon Mass Spectrum: Run 2

- Search Selection:
 - 2 photons with E_t>13 GeV, cosmic and beam-halo rejection cuts
- Main backgrounds:
- fakes from photon-jet and jet-jet: determined from data!
- Results: 1365(95)events for E_i>13(25) GeV

For $M_{\gamma\gamma} > 150 \text{ GeV}$

Expected background: 4.5 ± 0.6

Observed:

Experimental Aspects: Photons

- Background: jet fragmenting into "single hard pi0":
 - Use high granularity strip and wire chambers in central calorimeter to separate piO from photon
 - New strip and wire chambers in forward calorimeter
- Traditionally difficult for MC generators:
 - high z fragmentation
 - Differences between data and MC of factors of 2-5 or so
- Important for LHC light

 Manchester, 24/09/2003

 Higgs scenario!

 Beate Heinemann

 University of Liverpool

Probability of jet with π^0 carring more than 90% of energy: 0.1-0.01 %

Di-Bosons: W/Z + Photon

- Sensitive to coupling of gauge bosons to each other: WW_vertex
- Gauge structure of SU(2)xU(1) gives precise prediction
- Construct effective Lagrangian: introduce "anomalous couplings" _ and
 - vanish in SM
 - May be sizeable if W not point-like
- Z+_ and _*+_ don't couple to another (diagram C non existent)

W+ Photon: first Run 2 Results

- Event selection
 - lepton Et and Met >25 (20) in electron (muon) channel
 - Photon Et>7 GeV, _R(I_)>0.7
- Largest uncertainty: BG from jets fragmenting into "single

1 2 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	Events			
Signal MC	98.9±5.6			
Jet->_	28.1±9.4			
Other BG	13.7±0.7			
SM exp.	140.7±11.0±6.8 (lumi)			
Data	133			

Z+ Photon: first Run 2 Results

- · Event selection
 - 2 leptons Et>25 (20) in electron (muon) channel
 - Photon Et>7 GeV , _R(I_)>0.7
- BG from jets fragmenting into "single hard pi0" only 5%

	Events
Signal MC	40.5±2.3
Jet->_	2.5±0.8
Other BG	0.2+0.3-0.2
SM exp.	43.2±2.3±2.4 (lumi)
Data	47

W/Z+ Photon: anomalous couplings

- Suppress final state radiation contribution:
 - Final state radiation: $M(l_{,-}) \times M_W$, $M(ll_{,-}) \times M_Z$ GeV
 - S-, T- and U-channel: $M(I_,) > M_W$ $M(II_) > M_Z$ GeV
- Experimentally:
 - Cut at M(I_,_)>90 GeV, M(II_)>100 GeV
- Data in good agreement with SM prediction:
 - Anomalous coupling analysis not yet done
 - Will modify Et spectrum at high M(l_,_)>90 GeV / M(ll_)>100 GeV

Manchester, 24/09/2003

Beate Heinemann University of Liverpool

W/Z + Photon: Future

u

Heinemann of Liverpool

- Limits on __ and _:
 - Test SM at level of about 10(30)% in Run II
 - LEP 2 precision now: 2-3%
- "Radiation Zero" unique to TeVatron:
 - At LO suppressed e.g. for Workington Cos_*=-(1+2Q_i)=-1/3
 - Observable in anguse
 separation of lepton
 photon: _ -_lepton

Manchester, 24/09/2003

CDF II

W + Photon as Search

Run I: Et>25 GeV, lepton Et>25 GeV, photon Et>25 GeV

lepton	Data	SM exp
muon	11	4.2
electron	5	3.4
both	16	7.6

Phys. Rev. Lett. 89, 041802 (2002)

- Run 2: use W+_ analysis cuts and photon Et>25 GeV
 - $5M \exp: 9.6 \pm 0.4(stat.) \pm 0.7(syst.) \pm 0.5(lumi)$
 - Data: 7

W/Z+gamma+X: more exclusive channels

· Run I:

- found 1 event with 2 photons, 2
 electrons and large imbalance in
 transverse momentum
- SM expectation 10⁻⁶ (!!!)
- Run II:

Any new such event would be

eate Heinemann

University of Liverpool

WW-Production in Run 2

- both W's decay leptonically
- Large backgrounds from

- Suppressed by demanding no jets with Et>10 GeV
 - Large theoretical unc

Cross section:

 $5.1 + 5.4 - 3.6 \pm 1.3$ (sys) ± 0.3 (lumi) pb

 13.25 ± 0.25 pb (J.M.Campbell, R.K.Ellis hep-ph/9905386)

Motivation - Top Quark Mass

- Top Mass is a key electroweak parameter
- It has a LARGE mass that is close to the scale of electroweak symmetry breaking
 - Is top actively involved in EW symmetry breaking?
- Precise measurements of M_{top} and M_W constrain the Higgs mass in the Standard Model

Top Mass related to Higgs Boson Mass in SM

- Precision measurements of
 - M_W =80.450 +- 0.034 GeV/c^2
 - M_{top} =174.3 +- 5.1 GeV/c²
- Prediction of higgs boson mass within SM-due to loop

e.g. $M_{top} = 180 \text{ GeV}$ shifts minimum to $m_h = 128 \text{ GeV}!$

Beate Heinemann University of Liverpool

M_{top} (GeV

Top Quark Historically

1989: Indirect constraints on top from precision measurements at LEP

- 1995: Observation of Topquark at the TeVatron
- Excellent agreement between indirect and direct measurements

Tevatron (CDF+D0)

Manchester, 24/09/2003

Beate Heinemann University of Liverpool

23

Top Quarks Production and Decay

Top Mass Measurement

Template method:

- Kinematic fit under the tt hypotesis: use best χ^2 combination
- Likelihood fit of mass to MC templates

Dynamical method:

- Event probability of being signal or background as a function of m(t)
- Better use of event information → increase statistical power

Run I summary

New DO Run I result: versity of Liverpool

First look at top mass in Run II

Mass in lepton+jets channel with a b-tagged jet

 $177.5^{+12.7}_{-9.4}$ (stat) ± 7.1 (syst) GeV/c²

Mass in dilepton channel

$$175.0^{+17.4}_{-16.9}(stat) \pm 7.9(syst) \text{ GeV/c}^2$$

Double b-tagged di-lepton event

Run 162820 Event 7050764 Sun May 11 16:53:57 2003

What can we do with 2 fb⁻¹?

- Will have 20 times larger dataset than now and improved acceptance:
 - statistical error about 0.5-1 GeV
 - maybe better with fancier statistical techniques
- Goal for 2 fb⁻¹ (TDR): 3 GeV but less would be better
- Systematic Error needs to be reduced by nearly factor of three!

Systematic Uncertainties

Source	Error (GeV)	
Jet Energy Scale	6.2	
Initial-State-Radiation	1.3	
Final -State-Radiation	2.2	
Monte Carlo Generators	0.5	
Parton Distribution	2	
Functions		
Other MC modeling (e.g.	1	
Pt of ttbar)		
Background Shape	0.5	
B-tagging	0.1	
Total syst. Error	7.1	

- Jet Energy Scale by far the largest
- ISR and FSR
 reducible but hard
 to estimate "true"
 error
- PDF probably over-estimated

How do we Calibrate?

- Use di-jet events to calibrate forward to central: depends on
 - detector simulation of cracks and plug cal. Response
 - Statistics

Manchester, 24/09/2003

- Tune simulation to describe single particle response of calorimeter against well calibrated tracks (isolated tracks in situ + test beam): calorimeter E/ track p
- Use prompt photon events to ultimately check the jet energy scale:
 - not used for calibration
 - only used to set the syst. error

Beate Heinemann University of Liverpool

Systematic Uncertainty due to Jet Energy Scale

Source	Error (GeV)
Relative (Plug to Central)	2.9
Central Calorimeter Calibration	5.3
Correction to Hadron Scale	2.4
Correction to Parton Scale ("out of 0.4 cone")	1.8

Purely exp.:

Will achieve 3 GeV "rather soon"

Largely MC modelling: fragmentation and QCD radiation

=>Rely on phenomenlogy

Exclusive Higgs

A recent development: search for exclusive Higgs production pp→ p H p

Exclusive Higgs Production

Measure _ in

Roman Pots

Reconstruct mass from protons only

$$M_h = \sqrt{(p_1 - p_1' + p_2 - p_2')^2} \approx \sqrt{\xi_1 \xi_2 s}$$

Mass resolution of $O(1 \text{ GeV/c}^2)$ independent of decay mode

Access all decay modes=> measure coupling to mass!

Put RP's into ATLAS? Workshop in Manchester in December (B. Cox)

Exclusive Higgs: Competitive channel at LHC?

30 fb ⁻¹ at LHC		number of events			significance
Higgs signal		signal	background	S/B	$S/\sqrt{S+B}$
a) $H \to \gamma \gamma$	CMS	313	5007	$0.06 \left(\frac{1 \mathrm{GeV}}{\Delta M_{\gamma \gamma}} \right)$	4.3σ
	ATLAS	385	11820	$0.03 \left(\frac{2 \mathrm{GeV}}{\Delta M_{\gamma \gamma}} \right)$	3.5σ
b) $t\bar{t}H$ $b\bar{b}$		26	31	$0.8\left(\frac{10{\rm GeV}}{\Delta M_{b\bar{b}}}\right)$	3σ
c) $gg^{PP} \to p + H + p$ $\downarrow b\bar{b}$		11	4	$3 \left(\frac{1 \text{ GeV}}{\Delta M_{\text{missing}}} \right)$	3σ

DeRoeck, Khoze, Martin, Orava, Ryskin Eur. Phys. J. C25:391-403,2002

Exclusive Higgs: Status of Theory

- (fb) M_H=120 GeV: Tevatron LHC Normalisation
- Cudell, Hernandez (1994)
 - exclusive 30 200-400 elastic and soft pp

ox, Forshaw, Heinemann: Phys.Lett.B540:263-268,2002

nelastic

0.03-0.1

2-4

HERA x gap survival

hoze, Martin, Ryskin: Eur. Phys. J. C23 (2002) 311-327

nelastic ~0.05 ~3

- Predictions difficult due to soft gluon contributions
- -Two predictions agree but need experimental testing!

Exclusive Higgs: Experimental Status I

Up to one year ago: All predictions tested by just one run I measurement of DPE dijet-production (2 jets Et>7 GeV):

_(excl.)<3.7 nb at 95% C.L.

(a) exclusive (c) inelastic \mathbb{PP} $p \longrightarrow p$ $Q \longrightarrow M$ $p \longrightarrow p$ $p \longrightarrow p$

CDF Run I data

M(j,j)/M(all)

36

Experimentally a bit less than 1 due to finite jet size

Manch

University of Liverpool

ann

Exclusive Higgs: Experimental Status II

· Run II DPE:

- Lower prescale due to ability to trigger on gaps and RP tag
- Better gap detection
 due to new MiniPlug
 (3.5-5.5)

No "exclusive peak" seen:cross section for

$$R_{jj}>0.8$$
, $|\eta_{jet}|<2.5$, $0.03<_{<}<0.1$, $3.6<\eta_{gap}<7.5$:

CDF Run II data

Upper limit on exclusive cross-section

Manchester, 24/09/2003

Beate Heinemann University of Liverpool

Exclusive Higgs:

Measurement of χ_c Production

KMR predict sizable cross-section for exclusive χ_c (0++ state):

$$\sigma(\chi_c) \approx 600 \text{ nb}$$

$$BR(\chi_c _J/_+): 1\%$$

BR(
$$J/_{\mu\mu}$$
): 6%

Strategy:

- trigger on J/Psi muons (Pt>1.5 GeV, η <0.6)
- •Ask for rapidity gaps $(7.5>|\eta|>0.6)$
- •Look for low Et photon (about 300 MeV!)

Exclusive J/Ψ and χ_c

- "MiniPlug" and Beam-Shower-Counters cover 3.5<η<5.5 and 5.5<η<7.5:
 - Observe about 100 J/ Ψ events with rapidity gap on both sides
- Central Detector:
 - Demand at maximum one em tower above 100 MeV in central (from chic decay)
 - Apply cosmic filter
- => 23 events (10 with photon

Mancandidate)

Beate Heinemann University of Liverpool

How "exclusive" are the events?

- -Don't know: therefore quote upper limit
- -Need higher statistics

Exclusive J/Ψ and χ_c

Events compared to χ_c^{0++} MC:

- consistent but may have contributions from e.g. χ_c^{2++}
- and/or non-exclusive events

Upper limit on x-section: _<48±18(stat.)±39(syst.) pb

KMR for η <0.6: _ \approx 30-140 pb not ruled out (yet)

Conclusion and Outlook

- Physics at the TeVatron is back:
 - Have twice the Run I luminosity
 - Have phantastic detector
 - Analyses not as mature as Run I yet but getting there...
- Hoping for high luminosity in next few years:
 - Observe RAZ for first time?
 - Measure top mass to <3 GeV precision?
 - Understand exclusive production at hadron

Tevatron operating parameters

	Run 1	Run 2	Now
Date	1992 - 1996	2001 - 2009	2003
Integrated Luminosity	110 pb ⁻¹	4 - 9 fb ⁻¹	250 pb ⁻¹
c.m. energy	1.8 TeV	1.96 TeV	1.96 TeV
	2 x 10 ³¹ cm ⁻² s ⁻¹	$2 \times 10^{32} \text{ cm}^{-1}$ s ⁻¹	5 x 10 ³¹ cm ⁻² s ⁻¹
Bunch spacing	3.5 μs	396 ns	396 ns

Beyond the TeVatron: LHC

- pp-collider at CERN
- Center-of-mass energy:14 TeV
- Starts operation in 2008
- 3 years "low" luminosity:
 10 fb⁻¹ /yr
- · High luminosity: 100 fb⁻¹ /yr

Di-Boson Production via Higgs-decay @ LHC

Run 2 Top Expectations

	Run 1	Run 2	
Date	1992 - 1996	2001 - 200	7
Int Luminosity	110 pb ⁻¹	2000 pb ⁻¹ -> 15000 pb ⁻¹	
#top produced	550	15000+	
		Run 2a	Run 2b
Mass Precision	2.9%	1.2%	1.0%
σ(tt) Precision	25%	10%	5%

Handles for a precision measurement

A precise measurement of the top mass combines cutting edge theoretical knowledge with state of the art detector calibration

Jet energy scale

- gamma-jet balancing: basic in situ calibration tool
- Z+jet balancing: interesting with large statistics
- Hadronic W mass: calibration tool in tt double tagged events
- Z→bb mass: calibration line for b-jets, dedicated trigger
- Theory/MC Generators: understand ISR/FSR, PDF's
- <u>Simulation</u>: accurate detector modeling
- <u>Fit methodology</u>: how to optimally use event information
- Event selection: large statistic will allow to pick best measured events

 Manchester, 24/09/2003 Beate Heinemann

 University of Liverpool

Run II cross section summary

DØ Dileptons 90-107 pb⁻¹
CDF Dileptons 126 pb⁻¹
CDF L+Track 126 pb⁻¹

DØ L+jets/CSIP 45 pb⁻¹

DØ L+jets/SVT 45 pb⁻¹

DØ L+jets/topo 92 pb⁻¹

DØ L+jets/soft muon 92 pb⁻¹

DØ L+jets combined 92 pb⁻¹

CDF L+jets/SVX 57 pb⁻¹

CDF L+jets/HT 126 pb⁻¹

 $D\varnothing$ Combined 90-107 pb⁻¹

$$8.7^{+6.4}_{-4.7}(\text{stat})^{+2.7}_{-2.0}(\text{syst}) \pm 0.9(\text{lum})$$

$$7.6^{+3.8}_{-3.1}(\text{stat})^{+1.5}_{-1.9}(\text{syst})$$

$$7.3 \pm 3.4(stat) \pm 1.7(syst)$$

$$7.4^{+4.4}_{-3.6}(\text{stat})^{+2.1}_{-1.8}(\text{syst}) \pm 0.7(\text{lum})$$

$$10.8^{+4.9}_{-4.0}(\text{stat})^{+2.1}_{-2.0}(\text{syst}) \pm 1.1(\text{lum})$$

$$4.6^{+3.1}_{-2.7}(stat)^{+2.1}_{-2.0}(syst) \pm 0.5(lum)$$

$$11.4^{+4.1}_{-3.5}(stat)^{+2.0}_{-1.8}(syst) \pm 1.1(lum)$$

$$8.0^{+2.4}_{-2.1}(\text{stat})^{+1.7}_{-1.5}(\text{syst}) \pm 0.8(\text{lum})$$

$$5.3 \pm 1.9(stat) \pm 0.9(syst)$$

$$5.1 \pm 1.8(stat) \pm 2.1(syst)$$

$$8.1^{+2.2}_{-2.0}(\text{stat})^{+1.6}_{-1.4}(\text{syst}) \pm 0.8(\text{lum})$$